Kafka数据是存在磁盘上还是内存上
1. 顺序写入
因为硬盘是机械结构,每次读写都会寻址->写入,其中寻址是一个“机械动作”,它是耗时的。所以硬盘“讨厌”随机I/O,喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。如果一个topic建立多个分区那么每个parathion都是一个文件,收到消息后Kafka会把数据插入到文件末尾。
2. Memory Mapped Files(内存映射文件)
64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page来实现文件到物理内存的直接映射。完成映射之后你对物理内存的操作会被同步到硬盘上。
3. Kafka高效文件存储设计特点
Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。通过索引信息可以快速定位
message和确定response的 大大小。通过index元数据全部映射到memory(内存映射文件),可以避免segment file的IO磁盘操作。通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。
Kafka数据存储
(1)数据文件的分段Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中 小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。
(2)为数据文件建索引数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message 了,但是这依然需要顺序扫描才能找到对应offset的Message。
为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。
索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中 小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个 position就可以读取对应的Message了。index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。